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Abstract—A non-parallel flow analysis by an order-of-magnitude approach is performed to investigate the
linear wave instability of mixed convection flow along an isothermal inclined flat plate. This analysis
removes the previous restriction on the weak dependence of the streamwise variation of disturbance
quantities. The resulting non-homogeneous, coupled equations for the momentum and temperature dis-
turbances are solved by a superposition technique along with a modified Thomas transformation method.
Critical Reynolds numbers are presented for inclination angles in the range of 0° < y < 90° (with y being
measured from the horizontal), covering the buoyancy parameter range of —0.15 < Gr./ReZ < | for
Prandtl numbers of 0.7 and 7. It is found that the net effect of buoyancy force on the critical Reynolds
number is essentially zero at y = [.05° when the plate is almost horizontal. For y > 1.05, an increase in
the value of Gr,/Re? stabilizes the flow. This behavior is reversed for y < 1.05".

INTRODUCTION

ErroRrTs to clarify and to explain the process of tran-
sition from laminar to turbulent flow regime have
been undertaken for many decades. Many of the studies
in wave instability superpose small disturbances on
the laminar mainflow to see if the disturbances decay
or amplify as they travel in the streamwise direction.
The objective is to predict the value of the critical
Reynolds number for a prescribed laminar mainflow.
The critical Reynolds number result, however,
strongly depends on the characteristics of the wave
form assumed for the disturbances. One of the wave
forms, known as the parallel flow model, assumes
that the amplitude function of the disturbance & is
independent of the streamwise coordinate X (that
is, ®, = 8®/0X = 0). The disturbance equation thus
reduces to the standard Orr—Sommerfeld equation.
As applied to the Blasius flow over a flat plate, the
parallel flow model predicts a critical Reynolds num-
ber of A* = (Re)'?)* = 302 which is 37% higher than
the experimental data (i* = 220) of Schubauer and
Skramstad [1] and Ross et al. [2]. Mucoglu and Chen
[3] took the effect of the mainflow transverse velocity
V' (the V-effect) into account in the parallel flow
model, and obtained 4* = 290 which is still much
higher than the experimental data. Their model will
be referrced to as the ‘quasi-parallel flow model’ in this
paper.

To remedy the discrepancy between the results by
the parallel flow model and the experimental data,
non-parallel flow models considering the streamwise
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variation of @ have been proposed. In the non-parallel
flow models, due to the dependence of ® on X, the
definition of the disturbance amplification rate
depends on the growth of a certain physical quantity,
such as the stream function, velocity or intensity of
the disturbances. By assuming a weak X-dependence
of ®, Bouthier [4] proposed the method of multiple
scales to analyze the non-parallel linear instability of
Blasius flow. The amplification rate of the disturbance
then was defined by using the growth rate of dis-
turbance kinetic energy (the same as intensity). The
critical Reynolds number, however, was found to
depend on the normalization of the dimensionless
eigenfunction ®.. To fit the experimental data of
A* = 220 (Schubauer and Skramstad [1], Ross et al.
{2]), Bouthier chose a certain normalization to yield
A* = 205. Based on this particular normalization, he
found that the growth rate of the disturbances is two-
dimensional and reaches its maximum value at the
wall; that is, the least stable point occurs at the wall.
This is incredible, because the wall region should be
unconditionally stable due to the existence of a lami-
nar sublayer adjacent to the wall. Later, Gaster [5]
solved the same problem by using a similarity coor-
dinate and normalized the eigenfunction @, by some
means. He obtained a critical Reynolds number of
A* = 271 based on the total kinetic energy of the dis-
turbances. Saric and Nayfeh [6] later extended the
work of Bouthier [4] by considering also the V-effect.
However, in defining the neutral stability curve, they
did not consider the effect of the X-dependence of the
disturbance intensity. Their model is thus incomplete.
Very recently, ref. [7] presented a non-parallel flow
analysis based on the order-of-magnitude approach
so that there is no need to restrict the analysis to a
weak dependence of @ on X, as was done in previous
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NOMENCLATURE
¢, specific heat at constant pressure B stability function defined in equation
Bkg 'K~ (27b) ; or volumetric coeflicient of
E amplitude function of the disturbance thermal expansion [K ']
intensity y inclination angle of the plate measured
e P (x, 0)/Dy (x, 0) from horizontal position [deg]
g gravitational acceleration, 9.81 ms™? o characteristic boundary layer thickness
Gr,  Grashof number based on X, [m]
Bg(T,~ T, )X3/v? P S/ X,
Grs  Grashof number based on 6, fg|T.|6%/v2 ¢ +Grs/Re;
1 dimensionless disturbance intensity, 0 dimensionless temperature, (7—17,)/T.
(0P +1V1)"/U. A Res
k thermal conductivity [W m~' K] v kinematic viscosity [m* s~ ']

Pr Prandtl number, v/«

Re,  Reynolds number based on X, U_X/v

Re;  Reynolds number based on é, U d/v

S dimensionless amplitude function of
disturbance temperature, $/7.,

s normalized amplitude function of
disturbance temperature, S/®s'(x, 0)

T temperature [K]

t time [s]

U streamwise velocity [m s™']

u dimensionless streamwise velocity, U/U,

14 transverse velocity [m s™']

v dimensionless transverse velocity,
(X/0)V/U,

X streamwise coordinate [m]

x dimensionless streamwise coordinate,

X/X,
X, location where the disturbance is given

(m]

Y transverse coordinate [m]
y dimensionless transverse coordinate, Y/
Ve location in y-coordinate where ff reaches

its maximum value, B(¥.) = Brax-

Greek symbols
o dimensionless wave number of the
disturbance, &0 ; or thermal diffusivity
[m”s

¢ local non-similarity parameter in the
mainflow

p density [kg m~7]

()] dimensionless amplitude function of the

disturbance, ®/5U,
¢ normalized amplitude function of the
disturbance, ®/®( (x, 0)

¥ stream function of the disturbance
[m?*s™]
w dimensionless wave frequency, @d/U...

Superscripts
- disturbance quantity

* properties at the critical point.
Subscripts

c characteristic quantity

1 imaginary part of a complex number

nh ‘nonhomogeneous’

r real part of a complex number

w condition at wall

0 quantities based on quasi-parallel flow
model

1 correction to the quasi-parallel flow
model

o) condition in free stream.

investigations. A superposition technique along with
a finite difference method [8] was used to solve the
resulting non-homogeneous disturbance equations
without recourse to the use of an adjoint eigen-
function. Reference [7] found that the normalization
of the eigenfunction @, is not entirely arbitrary
because the condition @} (x,0) = 0®; (x,0)/0x gives
a constraint to the value of ®/(x,0). The value of
e = O/ (x, 0)/D;(x, 0), was thus treated as an arbitrary
real function of x such that the neutral stability curve
based on the disturbance intensity can be uniquely
defined. The analysis leads to a critical Reynolds num-
ber of A* = 217.4 which agrees very well with the
experimental data (A* = 220). Reference [7] also

showed that the amplification rate of the disturbance
intensity is two-dimensional, with a maximum occur-
ring near the location = (Y/X)Re)” = 3, and that
the wall region is unconditionally stable.

In this paper, the linear, non-parallel wave stability
of mixed convection flow along an inclined flat plate
is studied for the entire range of inclination angles 7
from 0° (horizontal) to 90° (vertical). In the study, the
above-mentioned method of ref. [7] is extended to
treat the coupling between the momentum and ther-
mal fields in the stability problem. The analysis is
based on the quasi-parallel flow model in refs.
[3,9, 10], but a correction is made to account for the
effect of the nonparallelism of the disturbance ampli-
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tude functions. Owing to the use of a superposition
technique along with a modified Thomas trans-
formation [8] for solving the non-homogeneous dis-
turbance equations, the present non-parallel flow
model analysis is very efficient and consumes only
about 10% more CPU time than the quasi-parallel
flow model.

ANALYSIS AND SOLUTION METHOD

As demonstrated in ref. [10] the disturbance equa-
tions based on the linear theory for two-dimensional,
incompressible flow along an inclined flat plate are

OOIY 01—V 1eX 814+ U@ 01e Y 0X — 82 P18 X3
+ V@Y —a*vieYy 6x)+ Vorujay?
—~UaViey? =af@len0*0/ex? +8*0jovy?)
—(@IRXNOPIOX>+ 7Py
+gfsinydTIeY Tgfcosy éTIoX (1
aTier+UeTiox+0oTiox +veTiey+VeTioy
= (kjpe NS TIoX? +22TIoYY) (2)

where the tildes denote disturbance quantities and the
boundary layer approximation has been applied to
the mainflow quantities. The inclination angle y is
mcasured from the horizontal position. In the present
investigation, artificial disturbances are imposed at a
certain axial location X, from the leading edge of the
flat plate and observations are made at an arbitrary
downstream location X. The disturbances are
assumed to have the form of a wave traveling in the
streamwise direction X with its amplitude functions
depending on both X and Y. That is

U=0%0y, V=—-0%0x

¥ =®X, V)exp <1f o?dX—ith)

Xo

X

5%

7=3W, Y)exp(if

x

gdx— id)t). 3)

For the spatial mode of disturbances considered
here, the wave number 4 = &, +i4; is a complex func-
tion of X and the wave frequency @ is regarded as a
real constant. It is noted that in parallel and quasi-
parallel flow models, the amplitude function of dis-
turbances ® and § are assumed to be independent of
X and the wave number thus can be uniquely defined.
The wave number and the amplitude functions of
velocity and temperature based on the quasi-parallel
flow model [10] are, respectively, defined as d,, ®, and
S, For the non-parallel flow model, owing to the X-
dependence of &, ® and S, corrections on them must
be made. The corrected quantities are assumed to have
the form

=d,+ed,, S=5,+e5, @

i = dy+ed,,

where ¢ is a small positive real number and can be
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defined as ¢ = 8/X, such that &,, ®, and S, have the
same order of magnitude as &, ®, and S, respec-
tively. For the quasi-parallel flow model. ¢ is ident-
ically zero.

Substituting equations (3) and (4) into equations
(1) and (2), and using the following dimensionless
quantities

O, =D, US, @, =®/US, S,=ST..

S =8/T., ay=1080, « =3,0, w=ndU,
u=UU, v=X/V/U, 0=(T—T,)T.,
i=Re;, (= +Grs/Res, Q=X 00X +n0,
n=(X/T)AT,/dX), Re;= U/

Gr, = gBITIS V2, y=Y[s. x=X/X. (5)

one obtains:

0(1) level
L (®y)+L1(Se) =0 (6a)
L2|(®0)+L22(50) =0 (6b)

Dy(x,0) = OH(x,0) = Dy(x, 0) = Dy(x,00) =0 (6¢)
kS50, 0)+k,80(x,0) = So(x,0) =05 (6d)
O(e) level
Ly (@ )+ L\o(S) =i, M, (g, Do, Sp)

+ M Aoy, o, Po. D, S)) (72)
Lo(® )+ Los(S) = 1, M5 (o0, Po, S)

+ M2, o, S, @..S) (7b)

O,(x,0) = D, (x,0) = D, (x, 0) = D(x,c) =0 (Tc)

k84 (x,0)+ koS, (x,0) = S, (x, 00) = 0 (7d)
where

L (@) =0"+a,@" +a,D" +a:0 +a,®
L2(S)=as8 +a,S

L, (®)= b0 +b,®

Ly, (S)y=S"+b,8+b,S

M\ (00, Dy, Sy) = a: P+ a @y +ay®@y+a,,S,

M (g, o, D0, D, S,) = a0 +a,® +a,®,

+a oS, +aux,

Mo (20, Dy, So) = bsPy+b6S0
Moy (ag, oy, So, D, S) = bs® . +b.S, +b2, (8)
and

a, = —v, a,= —20i—iMau—w), a;=av+r’
a, = agFiogMoju—wag+u’), as={siny

ae = —iaglcosy, a; = Au—4Hu,, agz = 2ivo,

ay = AQRwoy—3usd —u)+4iad, a,, = {cosy

a;, = — 207 +iv®; + (Ao — 3o u+ 6iad)d,
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by = Pra,, b,= —ol—il Pr(c,u—ow)

by= —PrQ, b, =10gAPr’, bs= —Prif’

bo = Priu—2in,, b,= —iS, ()]

with { = +Grs/Re;, o, = day/dx, &, = 0®y/0x and
S, = 8S,/0x.

The primes in equations (6)—(9) stand for partial
differentiation with respect to y. In the derivation of
equations (6)—~(9), the higher derivative terms §%/6X?,
0/0X? and 6*/6X* and the higher level equations of
O(&%) and smaller have been neglected. The form of
boundary conditions (6d) and (7d) at y = 0 will vary
according to the appropriate thermal boundary con-
dition. For the case of uniform wall temperature
treated in this paper, they are, respectively

So(x,0) = Sp(x,00) =0 (10a)

(10b)

In equation (5), the quantities (X)), X, U,(X) and
T.(X) are, respectively, the characteristic boundary
layer thickness, characteristic axial length, charac-
teristic streamwise velocity and characteristic tem-
perature. It should be pointed out here that the present
analysis is based on a local observation position X.
The characteristic quantities J, X., U, and 7 thus can
be treated as constants in the nondimensionalization,
equation (5). This point has been clarified well in the
past [7]. The quantities 6(X), U, (X) and T.(X) are
defined accordingly for individual flow cases and
appropriate thermal boundary conditions. The
characteristic length X, however, is defined such that
variations of quantities with respect to x are of the
order of unity. That is

S1(x,0) = S,(x,0) =0.

8/ox = X, 0/0X = O(1). (11)

For the quasi-parallel flow model, the assumption
/06X = 0leads to X, = oo (see equation (11)) and thus
¢ = 0/X, = 0. In the present non-parallel flow model,
the value of ¢ is

e=0/X, =d8/X (12)

because of the boundary layer approximation
(X. = X) and the system of equations (7) is used to
account for the effect of variations of «y, ®,and S, in
the streamwise direction. Hence, the quantities o,
@, and S, must be determined before the system of
equations (7) can be solved.

To determine «,, @, and S,, the first step is to
differcntiate equations (6a)—(6¢) and (10a) with
respect to x. This yields

L (@)+L (S = o . N (g, Py, Sp)

+ N5 (09, Do, Sp)  (13a)
Ly (D)4 L1:(S,) = a Ny (o, Dy, So)

+ Nos(ag, Do, So)  (13b)

S. L. L et al.

D .(x,0) = D(x,0) = D (x,0) = D (x, 0) =0 (13c)
S (x,0) = S,(x,0) =0 (13d)
where
N (ag, @y, So) = (dotg +14u)Dy — 200D
— (4o +1320iu—i2wad+1du YD,
—il,cosy .S,
Ns(atg, @, So) = 0, B¢ +idogu Oy —[odv + (7)) ]D
—ixoi[agu,+ @) ]®,
—{,.siny Sy —lagl, cosy .S,
N, (g, @y, So) = Qotg+id Pru)S,—id Pri’d,
Nyy(ag, @g, So) = Pro.Sy+14 Progu, S,

+ PrQ @) —iu,i Pr(6), 0, (14)

with u, = du/0x, (u”"), = du’’/dx, etc. In summary, the
stability problem under study is governed by the sys-
tems of equations (6), (13) and (7). These equations
have the same eigenvalue «, which can be found by
solving the eigenvalue problem described by the sys-
tem of equations (6). The values of «, and «, are to
be determined such that solutions of the systems of
equations (13) and (7) exist.

The formulation of the instability problem, rep-
resented by the systems of equations (6), (13) and
(7), is performed on a general basis. For individual
applications, the mainflow quantities u, v, u”’, v”, ¢,
Q, u, v, W), @), @), and Q, are determined
from the appropriate mainflow configuration. In the
present investigation, wave stability of mixed con-
vection flow along an isothermal inclined flat plate is
considered. The corresponding mainflow quantities
are given in Appendix A. Once the mainflow quan-
tities are available for given values of &, y and Pr, the
system of equations (6) can be solved by a modified
Thomas transformation method [8] to yield o, for
given w and A. The result can be expressed in the form

Do (x,y) = @5(x, 0)o(x. ) (15a)
So(x, ) = OG(x, 0)so(x, ) (15b)

where @7(x,0) is an arbitrary function of x and
do(x,y) and so(x, y) satisfy

Ly (¢o)+Lia(s0) =0
Ly (¢o)+Las(sp) =0

(16a)
(16b)

$5(x,0) = ¢g"(x, 0) =1 = po(x, ) = po(x, ) =0
(16¢)
$0(x,0) = so(x, 0) = 0. (16d)

The eigenvalue «, is determined to satisfy the bound-
ary condition ¢4(x,0) = 0.

Substituting equations (15) into equations (13) and
solving the resulting equations by a superposition
technique, as described in Appendix B, one has



Non-parallel wave instability of mixed convection flow on inclined flat plates

(D,((X, y) = (Dx//(xa 0)¢0(x, y)+ (D/O/(x’ 0)¢x,nh (X, J’)
= @6/()(, O)[eq&(,(x, y) + ¢x,nh (x’ y)]
Sv (.’C, ,V) = (D(;,(x’ 0)[95‘0()5, y) +Sx,nh (xa y)] (17)

where e = O (x, 0)/®{ (x, 0) is an arbitrary function
of x, and the functions ¢, ., and s.,, are defined,
respectively, by

DX, ) = 0,0, (0, 1)+ Do (%, 1)
Seon (%, 1) = S (X, ) 5,5 (%, 3)
in which ¢,
Ly () +Lia(sca) = Ny (2o, Po, So)
Loy (@ra)+Laa(8c0) = Naoi (0o, Po, o)
P (x,0) = ¢, (x,0) = ¢, ,(x,0) = P (x,0) =0
(19)

(18)

and s, , satisfy

S, 0) =5 ,(x,0)=0

and ¢, and s, satisfy
Ly(@en)+Lia(sis) = Nia(0o, o, 50)
Lo (@) + L2 (5cs) = Noa(otg, Do, S0)
¢ n(x,0) = ¢ (x,0) = d,(x,00) = P 4(x,0) =0
(20

The value of o, can be uniquely determined by the
boundary condition @ (x,0) = 0, which gives

Ay = (b,\:h (X, O)/(bx.a (xs 0)

from equations (17) and (18).
Similarly, substitution of equations (15) and (17)
into equations (7) leads to

o, =i, +e= —¢,,(x,0)/P, .(x,0)
where ¢, ,(x, y) and s, (x, y) satisfy
Ly(P1a)+ Lials10) = My (20, o, 50)

Ly (@1a)+ Laa(sy.) = My (%0, §o, So)
$1a(x,0) = @7 (x,0) = ¢ (x,00) = ¢ ,(x,0) =0
23

s,\'.h(xw 0) = S»(.h(x* @) = 0

@n

(22

$1.(x,0) =5, ,(x,0c)=0

and ¢, ,(x, ) and 5, 4(x, y) satisfy
Lii(dis)+Lia(s15) = Mi2(oto, 0, §os Dy Senn)
Loy (@1p) 4 Laalsi ) = Moy (00, %, S0, Prnhs Snn)
$14(x,0) = 1, (x,0) = ¢, (x. 20) = P1(x,00) =0
$15(x,0) = 5, ,(x,00) =0. (24)

It should be noted that the value of ia, can be
uniquely determined by equation (22); however, «
depends on the arbitrary function e. Note also that
for a flow with the particular characteristics

U =v, =W =0 =00),=Q=_(=0

the non-homogeneous terms N,, and N,, disappear,
see equations (14). This results in ¢, = s, , = 0 (equa-
tions (20)), and therefore o, = 0 and ¢, = Sy pp = 0.
This in turn gives zero values for «,, ¢, and s, 4.
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Under this particular situation, the present non-
parallel flow model reduces to the quasi-parallel flow
model.

DEFINITION OF NEUTRAL STABILITY
CURVES

As mentioned earlier, the definition of the growth
rate of disturbances depends on the use of a physical
disturbance quantity, such as a velocity component,
stream function, or intensity. The proper choice of a
physical quantity for use in the definition of the
growth rate of the disturbance is very important. It
should be noted that as the fluctuating velocity com-
ponents in a turbulent flow, the disturbance velocity
components | 7| and | [ have the same order of mag-
nitude. In turbulent flows, the turbulent intensity is
widely used as an indicator of the strength of turbu-
lence. It is thus reasonable to employ the disturbance
intensity as the criterion for the disturbance growth
rate. Based on the disturbance intensity, ref. [7] stud-
ied the non-parallel wave instability of the Blasius
flow. The neutral stability curve obtained for this flow
is in excellent agreement with the experimental data
of Schubauer and Skramstad [1] and of Ross e al. [2].
In the present study of mixed convection flow, the
velocity disturbance intensity will dominate the wave
instability characteristics because the effect of the tem-
perature disturbance on the instability of laminar flow
is expected to be small, especially in the forced con-
vection dominated mixed convection regime. The pre-
sent study, therefore, employes the velocity dis-
turbance intensity as the criterion.

At an observation location X, the intensity of the
disturbance can be evaluated from

X

1= (|Ul2+| I7|2)”2/Uc = Eexp<—~J" o?idX> (25a)

’\0
or
1(x,y)/ E(xo,y) = CXP[‘JV‘ (a/e~P) dx] (25b)

where E(x,,y) is the intensity of the disturbance
imposed at x,, and

E = (|®'|? + |e 00/0x + ia®|?)'
B = E.\E.

(25¢)
(25d)

Since both x, and x are arbitrary, for a stable flow
to exist the integrand in the exponential power of
equation (25b) should maintain a positive value as the
disturbance travels along the streamwise direction.
Thus

o—ef =0 (26a)
or

(oo); "8[5__ (@)1= 0. (26b)
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Substitution of equations (15), (17) and (22) into
equations (25¢), (25d) and (26b) yields

(20 —e[f— ()] = 0 (27a)
where
ﬁ::¢6'¢éﬂf+(a0:%J|¢0|z+|“2P(¢0'¢mm)
(61" +lao]*|dol
(27b)
and
f=e+8B. (27¢)

It is noted that the high order terms O(¢) have been
neglected from equation (27b), and the dot ** denotes
a vector inner product if the complex numbers are
regarded as two-dimensional vectors, i.e.

o= o, +iog = ad+o4j. (28)
With the definition of equation (27b), f is a real
function of y and has the maximum value that
occurs at y =y, 1.e. Pua = (o). As in ref. [7],
e = 07(x,0)/Dy(x,0) in equation (27¢) is treated as a
real function of x. A detailed discussion on this can
be found in ref. [7]. The neutral stability curve thus
can be defined as the curve that satisfies

(“o)i - 6[ﬁmax - (ae)i] =0.

When equation (29) is satisfied, the least stable point
(x, y.) is just neutrally stable, and all of the points at
y # y. are stable. The flow in the wall region is
expected to be unconditionally stable because at the
wall (v = 0) the denominator of the function f is
identically zero (see equation (27b)) such that the
value f(x, 0) becomes negative infinity.

(29)

RESULTS AND DISCUSSION

Numerical results for neutral stability curves and
critical Reynolds numbers were obtained for Prandtl
numbers of 0.7 and 7. Computations were performed
for inclination angles of y =0° and 5° <y < 90°,
where y is measured from the horizontal position. The
buoyancy parameter Gr,/Re? ranged from 0 to 1 for
assisting flow and from 0 to —0.15 for opposing flow.
For given values of @ and A the stability equations
(16), (19), (20), (23) and (24) were solved by a modified
Thomas transformation method [8]. The step size of
Ay = 0.05 along with 5, =10 was found to be
adequate for all values of Gr./Re? and y that were
investigated. All computations were done on an IBM
4380 computer.

The neutral stability curves based on the present
non-parallel flow model, equation (29), for two rep-
resentative values of the buoyancy force parameter of
Gr./Rel =0.1 and —0.1 are shown in w vs 4 coor-

S. L. LEg et al.
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FiG. 1. Neutral stability curves at various angles of incli-
nation for Gr./Rel = —0.1,0 and 0.1.

dinates in Fig. 1 for Pr=0.7 and 4 =0, 30" and
90°. The neutral stability curve for the Blasius flow
(Gr./Re? = 0)is also plotted in Fig. | for comparison.
Note that for the case of Blasius flow, the results are
independent of y. The region enclosed by the ncutral
stability curve represents the domain in which the
disturbance intensity is amplifying at least at a point
inside the boundary layer. The flow is thus regarded
as unstable. Along the neutral stability curve the least
stable point (x, y.) 1s just neutrally stable, and all other
points with y # y_are stable. Outside the neutral stab-
ility curve, the flow is entirely stable. For y = 90 and
30°, an assisting buoyancy force is seen to stabilize
the flow, and this trend is reversed for an opposing
buoyancy force. It is also seen from Fig. | that a larger
value of y gives a larger buoyancy force effect. This is
consistent with physical reasoning. For the case of a
horizontal flat plate (y = 0°), however, the trend is
reversed. This behavior can be explained by noting
that there are two terms in the mainflow conservation
equation (A2)

TgPsiny(T—T,)

a o
X Jy

igﬁcosy6

and

(T-T7,)dY

that stand for the buoyancy force. For convenience,
the former is called buoyancy 4 and the latter buoy-
ancy B. From the transformed equations (A6) and
(A16), one sees that buoyancy A4 is O(sin y) and buoy-
ancy Bis O(Re; "% cosy) in magnitude. For the cases
of 5° < y < 90°, buoyancy Bis negligible as compared
to buoyancy A4 because Re’? is very large in the prac-
tical situation. The effective buoyancy force thus is
proportional to sin y and has a stabilizing effect on the
flow as can be seen from Fig. 1. In the case of a
horizontal flat plate (y = 0°), buoyancy A4 disappears
and buoyancy B is O(Re; ?). In addition, the assist-
ing buoyancy B acts in the direction normal to the
forced flow. As a result, it aids in moving the fluid
particles away from the plate and thus destabilizes the
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F1G. 2. The function B of the critical points at y = 90° for
various values of Gr,/Re?.

main flow, even though its effect is not that significant.
Under the condition of yatan'(Re;"?) or
0" <7< 5, both buoyancy 4 and buoyancy B must
be considered. This point will be discussed later. The
points having the minimum value of 4 on each neutral
stability curve are called critical points. The detailed
properties at such a point are listed in Table 1 for
Pr=0.7 and in Table 2 for Pr = 7. Based on these
properties, the functions () for Pr = 0.7 are plotted
in Fig. 2 for various values of the buoyancy parameter
al 7 = 90 and in Fig. 3 for representative values of
the inclination angle at ¢ = +0.1. All of the functions
S shown in Figs. 2 and 3 possess two humps. The
location y = y, where f§ reaches its maximum value is
the least stable point. It should be noted that the value
of $(0) is undefined, see equation (27b). Its value is
believed to be negative infinity such that the wall
region is unconditionally stable due to the existence
of a laminar sublayer adjacent to the wall. Figure 2
reveals that the function f increases for an assisting
buoyancy force, especially near the inner hump
(v. ¥ 3) where the least stable point exists. On the
other hand, an increasing opposing buoyancy force
gives a sharp decrease at the inner hump such that the
least stable point jumps from the inner hump to the
outer hump (y. =~ 6.5) at a certain buoyancy par-
ameter in the range —0.10 < Gr/Re? < —0.05. Simi-
lar effects can be found in Fig. 3 for y = 90° and 30°
because the buoyancy force is proportional to siny.

20 T T T T )

-05 1
0

FiG. 3. The function § of the critical points at various angles
of inclination for Gr /Re? = —0.1, 0 and 0.1.
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For the case of a horizontal plate (; = 0°) the buoy-
ancy effect on function f is negligible. The trend.
however, is reversed. For instance, the values of fi,,..
are, respectively, 1.1841, 1.1830 and 1.1787 for
Gr /Re¥* of —0.0005, 0 and 0.0005 or Gr./Re; of
—0.111, 0 and 0.106 (see Table 1).

The critical Reynolds number, i* = (Re!”)*. are
presented in Fig. 4(a) as a function of the buoyancy
parameter Gr,/Re? for Pr=0.7and y = 90,45 , 30,
15°, 5° and 0°. For a clearer view, the portion
—0.1 < Gr/Re?<0.1is enlarged and shown in Fig.
4(b). The results based on the quasi-parallel flow
model [10] are also plotted in Figs. 4(a) and (b). All
of the curves from the present non-parallel flow model
are seen to pass through the point Gr /Re] = 0 and
A* = 217.4. This is because the buoyancy effect dis-
appears for all inclination angles 0" <y <90 at
Gr./Rel =0. The curves for 5 <y < 90" possess
positive slopes which means that an increase in the
buoyancy parameter Gr,/Re; will stabilize the flow.
For the horizontal flat plate (y = 07) the trend is
reversed. These behaviors agree with the quasi-par-
allel flow model. Due to the neglect of the streamwise
dependence of wave properties, the quasi-parallel flow
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Non-parallel wave instability of mixed convection flow on inclined flat plates
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F1G. 5. The critical Reynolds number as a function of siny
for various values of Gr /Re?.

model overpredicts the critical Re*molds number by a
great amount. For example, for Gr/Re? = 0 the quasi-
parallel flow model gives 2* =290 which is about
33% higher than the present result of 1* = 217.4 and
the experimental data of A* = 2201, 2]. For an oppos-
ing buoyancy force, the overprediction is even larger.
Unfortunately, there are no experimental data avail-
able to verify the present results for the case of mixed
convection flow. When 4 is sufficiently large ore = 1/4
1s sufficiently smali, the present definition of the neu-
tral stability curve, equation (29), reduces to (,); = 0.
Thus, the quasi-parallel flow model is expected to give
a good prediction for 1 > 3000 as can be seen from
Fig. 4(a).

It is pointed out here that for the vertical plate
(y = 90°), the critical Reynolds numbers based on the
outer hump of function f (sce Figs. 2 and 3) are
obtained for the case of an opposing buoyancy force.
From Fig. 4(b), one can see that for Gr./Re!?
< —0.066, the outer hump overtakes the inner
hump and gives a smaller critical Reynolds number.
For small inclination angles, the buoyancy effect
is not as significant. The curves shown in Fig. 4(a) for
v =15 and 0" thus approximate straight lines with a
small positive slope for y = 5" and a small negative
slope for y = 0".

Based on the behaviors described above, it is
expected that there exists a certain value of y at which
the net effect of buoyancy 4 and buoyancy B becomes
zero and thus a straight line of zero slope exists at
that inclination angle. This point can be verified by
replotting the critical Reynolds number as a function
of siny for various values of Gr /Re? as shown in Fig.
5. Tt is interesting to note from Fig. 5 that smooth
curves can be constructed in the entire regime of
0 < siny < 1 for each value of Gr./Re? that was inves-
tigated. As expected, these curves have a common
crossover at y = 1.05" (i.e. siny = 0.0183) where the
net effect of the buoyancy force is zero. As a result,
for an increase in the value of Gr./Re? the flow will
become more stable when y > 1.05° and less stable
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F1G. 6. The effect of Prandt! number on the critical Reynolds
number.

when y < 1.05°. Figure 5 also reveals that an increase
in the inclination angle y stabilizes the flow for an
assisting buoyancy force and destabilizes the flow for
an opposing buoyancy force.

The critical Reynolds numbers for Pr = 0.7 and 7
and for y = 90°, 15° and 0° are brought together in
Fig. 6 to examine the effect of Prandtl number. Figurc
6 illustrates that for weak buoyancy forces an increase
in the Prandtl number destabilizes the flow for an
assisting buoyancy force and stabilizes it for an oppos-
ing buoyancy force. However, for strong assisting
buoyancy forces, a higher Prandtl number gives risc
to a higher critical Reynolds number. These trends
agree with those from the results of quasi-parallel flow
model analysis [3, 11].

CONCLUSION

Linear wave instability of mixed convection flow
along inclined flat plates is investigated by employing
a non-parallel flow model based on the order-of-mag-
nitude analysis. The resulting non-homogeneous,
coupled disturbance equations are solved by a super-
position technique along with a modified Thomas
transformation method without the use of adjoint
eigenfunctions. The solutions reveal that for a given
buoyancy parameter |Gr,/Re?| as the inclination angle
y increases the flow becomes more stable for the assist-
ing flow and less stable for the opposing flow. With
an increasing value of Gr./Re?, the flow is found to
become more stable for y > 1.05” and less stable for
y < 1.05” when the plate is almost horizontal. At
y = 1.05°, the net effect of the buoyancy force on the
critical Reynolds number appears to be zero in the
range of —0.15 < Gr./ReZ < 1.
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APPENDIX A

The conservation equations for mixed convection flow
along an inclined flat plate are

oU/GX+0V]oY =0 (A1)
UaUI0X+VeUjdY = +gfsiny(T—T,,)
igﬁcosy%ﬁw (T-T,)dY+v32U/eY? (A2)
UdT/OX+ VIT)OY = a d*T/3 Y. (A3)
The associated boundary conditions are
U(X,0) = U,(X), V(X,0)=V,(X), UX,0)=U,
TO,Y)=TX,0)=T,
T(X,0) = T, (X) if T(X)is known
0T(X,0)/0Y = —q,(X)/k if g, (X) is known. (A4)

In writing equations (A1)-(A4), the Boussinesq approxi-
mations are employed and the fluid properties are assumed
to be constants. The plus and minus signs in front of the
first buoyancy force term on the right-hand side of equation
(A2) apply, respectively, to upward and downward forced
flow, while those in front of the second term to flow above
and below the plate.

By introducing the general transformation

Y =vXf&n)s, n=1Yo5, O=(T-T,)/T.
¢ = ¢(X), b=0(X), T.=T/(X)
the governing equations (A1) (A3) become
S Haff” +bf P+ A0+ BlpnO+ (p—e)w — ¢ ow/E)
= c(f"ofj0s—f of'jog)

(A5)
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07+ Prafly + Pref'0 = Prc(0V 6f/0¢ —f 00/8¢)

w+0=0 (A6)
where
a=1—p, b=2p—1, ¢c=—-mf, e=—n
m = (X/&)(d{/dX), n= (X/T)dT./dX)
p = (X/3)(dd/dX), A =0|Gr.|(3/X)*siny
B = 6|Gr,|(8/X)°* cosy
Gre = (gBTX V) (31X) . (A7)
The associated boundary conditions are
P—DSE.0+cdf (£ 0)/88 = V,6/v
[0y = U vX, f(¢ ) =U, 8 X
JE0+A-)O(E,0) =1-2
0(£,0) = w(§, 00) = 0. (A8)

In equations (A7), ¢ =1 stands for buoyancy assisting
flow and ¢ = —1 for buoyancy opposing flow. The index j,
the characteristic temperature 7.(X) and the general Grashof
number Gr, are defined such that

j=0, T.=T,(X)~T,,
Gr, = Gr, if T,(X)is known
ji=1L1 T, =q,(X3X)k,

Gr. = Gr* if g, (X)is known. (A9)

The system of transformed equations (A6) and boundary
conditions (A8) can be easily solved by a method proposed
in ref. [12]. Once the solution is obtained, the mainflow
quantities which are needed for the analysis of wave insta-
bility problems are evaluated from

u=1', v=(p=Df+pnf +cofloc
WS =+ Gp =)+ df 3¢
Q = (X/T.)@T/OX) = nb—pyl’ —c 36/0¢

{ = 0(1Gr,|/Re (U UGS/ X)** (A10)
and
u, = —pnf"’—cofjot
W)= —puft—cof”10¢
ve= —p T+ (p=2p7 —cpInS’
—epef—2pne of'jo¢
+(m—p+1+Eime)e 8f/o¢
—ctofjog?
)= =P+ (p—4p*—cponsS”
—3epef” —2pne of "' |6&
+(m—3p+14Em)c of " [6¢
— P02
(0= —pnd” —c o0/0¢
Q. = p’n’0”+(p*—np+cp)nt’
—cn:0+2pye 06°/0¢
—(m+n+Emge 80/0E +c* °60/0¢?
¢, = X dgdx. (ALD)

In the present investigation, forced convection domin-
ated mixed convection flow along an inclined flat plate is
considered under the thermal boundary condition of uniform
wall temperature without injection and suction (U, = V,,
= 0). Therefore, §, U, and T. are conveniently defined,
respectively, by
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5= X/Re!*, U, =U,, T,=T,—T, =constant

(Al12)

suchthatn = 0,p = 1/2,j =0, Gr. = Gr,, A = o(|Gr.|{Re?)
siny, B = 6(|Gr,|/Re'?) cos y, and the boundary conditions
reduce to

fEO)=1(0)=/(x)-1=0
6(¢, 0)—1 = 0(&, 0) = w(&, 0) = 0. (A13)
The parameters defined in the stability problem are then
/. =Re;=Re)?, e=68/X=1"
{=0|Gr./Re}, (. =¢ (Al4)

The pseudo-similarity variable # defined in the mainflow is
identical to y defined in the flow stability problems because
the flow stability is analyzed at a local value of X or 4.

For the cases of vertical and inclined flat plates
(5" <y <€ 90°), & is defined by

{ = |Gr.|/Res. (AL5)
This gives
A=gésiny, B=afRe;"*cosy
{ =t m=1. (A16)

In practical situations, Re!? is usually large and B assumes
essentially a value of zero in the range of 5° < y < 90°.

For the case of a horizontal flat plate (y = 0°)
¢=|Gr.|/Rei?, 4=0, B=g¢
= o0éi, m=1/2.

(A7)

APPENDIX B
Equations (13) and (7) have the common form

L (@®)+L:(8)=TF, +F,;,

Lyy(D)+ Lyo(S) =TFy +Fpy

®(0) = D'(0) = B(x) = D' (0) =0

S(0) = S(ec) =0 (B1)
where the linear operators L,,, L5, L,, and L,, are defined
in equations (8) and (9). They are known after the eigenvalue
a, is determined by solving the eigenvalue problem described
by the system of equations (6) or (16). The non-homogeneous
terms F,,, F,,, F,, and F», are all known functions of y. The
value of T is to be determined such that solution of the

system of equations (B1) exists. Since L;; are linear operators,
the solution can be superposed by
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® = 27(0)¢, + ', + O,
S =0"(0)s,+I'Sy+ 5. (B2)

where ¢,, s,, ®;, S, and ., S, are, resi)ectively~ defined by
the system of equations

Li(9p)+Liy(s,)=0
Ly (¢)+Ls(s,) =0
B0 = B0 —1 = () = 1) = 0

5,(0) = 5,(0) = 0 (B3)
Li(@)+L5(Ss) = Fuy
Loy (@) + Ly (Sp) = Fay
@;(0) = @;7(0) = D, () = Py(x) =0
8,(0) = S,(c) =0 (B4)
and
L @)+ L5 (S) = Fia
Loy (@) + L22(S) = Faa
®(0) = D(0) = D () = P (x) =0
S.0) = S(x0)=0. (BS)

It should be noted that the solution to the system of
equations (B3) is identical to that of the system of equations
(16) because the same eigenvalue «, obtained from system
(16) has been imposed on system (B3). It should also be
noted that the present analysis is performed at a local value
of X. Therefore, ¢,(3) = ¢o(x, 1), (0) = Py(x,0) =0 and
5,(») = so(x, y). With this, the boundary condition ®(0) = 0
gives

®(0) = &7(0),(0)+ T D, (0)+ D (0) = 0
or
I'=—0.(0)/,0). (B6)

The solution of the system of equations (B1) thus has the
form

D) = O”(0)y(¥) + Pus (1)

S(¥) = D"(0)sa(y)+ Sy (1) (B7)
where
G(y) =TO(1)+ D)
Son() =TS, (MN+S.(¥). (B&)

This superpositions technique can be verified by mul-
tiplying equations (B3), (B4) and (B5), respectively, by
@”(0), T and unity, and then applying equations (B2). A
proof of this approach can be found in ref. [7] for the case
of Blasius flow.

INSTABILITE D’ONDE NON PARALLELE POUR LA CONVECTION MIXTE SUR DES
PLANS INCLINES

Résumé—Une analyse d’écoulement non paralléle est conduite pour étudier I'instabilité linéaire d’onde
dans le cas de la convection mixte sur une plaque plane isotherme inclinée. Les équations couplées, non
homogeénes pour les perturbations de quantité de mouvement et de température sont résolues par une
technique de superposition associée a une méthode de transformation de Thomas modifiée. Les nombres
de Reynolds critiques sont présentés pour des angles d’inclinaison 0° < y < 90° (ou y est repéré par rapport
a Ihorizontale), pour le paramétre de flottement —0,15 < Gr,/Re? < | et pour des nombres de Prandt
égaux a 0,7 et 7. On trouve que effet de la force d’Archiméde sur le nombre de Reynolds critique est
essentiellement nul a y = 1,05°, lorsque la plaque est presque horizontale. Pour y > 1,05, un accroissement
de Gr,/Re? stabilise 'écoulement. Ce comportement est renversé lorsque y < 1,05°.
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DIE NICHT-PARALLELE WELLEN-INSTABILITAT BEI MISCH-KONVEKTION AN
GENEIGTEN EBENEN PLATTEN

Zusammenfassung—Die nicht-parallele lineare Wellen-Instabilitdt bei Misch-Konvektion an einer iso-
thermen geneigten ebenen Platte wird mittels einer GroBenordnungs-Abschdtzung untersucht. Diese
Abschiatzung macht die bisherige Beschrankung auf eine schwache Abhéngigkeit von Verdnderungen
der Stérungsintensitit in Strémungsrichtung Gberfliissig. Es ergeben sich nicht-homogene, gekoppelte
Gleichungen fiir die Stérungen von Impulstransport und Temperatur. Diese werden mittels einer Uber-
lagerungs-Technik und unter Verwendung einer modifizierten Thomas-Transformation geldst. Es werden
kritische Reynolds-Zahlen fiir die folgenden Parameter-Bereiche vorgestellt: Neigungswinkel beziiglich
der Waagerechten 0° < y < 90°, Auftriebsparameter —0,15 < Gr,/ReZ < 1, Prandtl-Zahlen 0,7 und 7. Es
zeigt sich, daB bei fast waagerechter Platte (y = 1,05°) der Netto-Effekt der Auftriebskraft auf die kritische
Reynolds-Zahl verschwindend klein ist. Fiur y > 1,05° wird die Strémung durch ein Anwachsen von
Gr./Re? stabilisiert—das Umgekehrte gilt fiir y < 1,05°.

BOJIHOBASI HEYCTOMUYMUBOCThL CMEIIAHHOKOHBEKTHBHOI'O TEUEHWS HA
HAKJIOHHBIX IUVIOCKHUX IMJACTHMHAX

AunoTauns—AHAIH3 HeAPAJUIEIbHBIX TEYCHHH METOAOM OLEHKH NMOPA/IKA BEIMYHH HCNOJb3YETCH 118
H3y4eHHS JIHHEHHON BOJIHOBOM yCTONYMBOCTH CMEIA@HHOKOHBEKTHBHOIO TEYCHHA BIOIb H3OTEPMHYEC-
KO# HAKJIOHHOH TLIOCKOH IUTACTHHEL JIaHHBIHA TOXOM CHEMAET paHee CyHIeCTBOBABIIEE OrPaHHiCHHE O
cabo¥ 3aBHCHMOCTH BEJIMYHH BO3MYHIEHHA BJOJb MOTOKA. [TonyyeHHbIE B pe3yibTaTe HEOAHOPOHBIC
CBA3aHHBIE YPABHEHMs /Ul BO3MYILUCHUH MMIIYJIbCA M TEMIEPATYDHI DEINAIOTCH COBMECTHO METOAOM
NOACTAHOBKH M MOAM(UIMPOBAHHBIM MeTONOM npeobpazopannus Tomaca. Kpuruueckue uncna Pefino-
AbJICA MPECTABJIEHBI IS YIJTOB HakjgoHa 0° < 7 < 90° (IpHYeM y OTCUHTHIBAETCH OT TOPH3OHTAIIH), B
Anana3oHe napamerpa miasydect —0.15 < Gr,/Re? nns wncen Ipannras 0.7 u 7. HaifaeHo, uTo pesy-
JIBTHpYIOLIee BIHAHEE CIUTHI IUIABYYECTH Ha KPHTHYECKOe YuCi0 Peffnonbaca paBHo Hymro mpu y = 1.05°,
KOT/Ia INIACTHHA MOYTH TOpu3oHTanbHa. Jns y > 1.05° ysennuenwne suauenns Gr /Rel crabunmsupyer
TedeHue, a g y < 1.05° HabmromaeTcs o6paTHbIHA 3ddekT.



