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Abstract--A non-parallel flow analysis by an order-of-magnitude approach is performed to investigate the 
linear wave instability of mixed convection flow along an isothermal inclined flat plate. This analysis 
removes the previous restriction on the weak dependence of the streamwise variation of disturbance 
quantities. The resulting non-homogeneous, coupled equations for the momentum and temperature dis- 
turbances are solved by a superposition technique along with a modified Thomas transformation method. 
Critical Reynolds numbers are presented for inclination angles in the range of 0 ° ~< 7 ~< 90' (with ;, being 
measured from the horizontal), covering the buoyancy parameter range of -0.15 ~< GrjRe.~ ~< 1 for 
Prandtl numbers of 0.7 and 7. It is found that the net effect of buoyancy force on the critical Reynolds 
number is essentially zero at 7 = 1.05' when the plate is almost horizontal. For 7 > 1.05', an increase in 

the value of Gr.,/Re~ stabilizes the flow. This behavior is reversed for 7 < 1.05. 

INTRODUCTION 

EFFORTS to clarify and to explain the process of  tran- 
sition from laminar to turbulent flow regime have 
been undertaken for many decades. Many of the studies 
in wave instability superpose small disturbances on 
the laminar mainflow to see if the disturbances decay 
or amplify as they travel in the streamwise direction. 
The objective is to predict the value of  the critical 
Reynolds number for a prescribed laminar mainflow. 
The critical Reynolds number result, however, 
strongly depends on the characteristics of  the wave 
form assumed for the disturbances. One of  the wave 
forms, known as the parallel flow model, assumes 
that the amplitude function of  the disturbance (~ is 
independent of  the streamwise coordinate X (that 
is, (~, = #~/OX = 0). The disturbance equation thus 
reduces to the standard Or~Sommer fe ld  equation. 
As applied to the Blasius flow over a flat plate, the 
parallel flow model  predicts a critical Reynolds num- 
ber of  2" = (Re)./2) * = 302 which is 37% higher than 
the experimental data (2* = 220) of  Schubauer and 
Skramstad [1] and Ross et al. [2]. Mucoglu and Chen 
[3] took the effect of  the mainflow transverse velocity 
V (the V-effect) into account in the parallel flow 
model, and obtained 2 * =  290 which is still much 
higher than the experimental data. Their model will 
be referred to as the 'quasi-parallel flow model '  in this 
paper. 

To remedy the discrepancy between the results by 
the parallel flow model and the experimental data, 
non-parallel flow models considering the streamwise 
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variation of(~ have been proposed. In the non-parallel 
flow models, due to the dependence of  ~) on X, the 
definition of  the disturbance amplification rate 
depends on the growth of  a certain physical quantity, 
such as the stream function, velocity or intensity of  
the disturbances. By assuming a weak X-dependence 
of  (~, Bouthier [4] proposed the method of  multiple 
scales to analyze the non-parallel linear instability of  
Blasius flow. The amplification rate of  the disturbance 
then was defined by using the growth rate of  dis- 
turbance kinetic energy (the same as intensity). The 
critical Reynolds number, however, was found to 
depend on the normalization of  the dimensionless 
eigenfunction q).,. To fit the experimental data of  
2* = 220 (Schubauer and Skramstad [1], Ross et al. 
[2]), Bouthier chose a certain normalization to yield 
2* = 205. Based on this particular normalization, he 
found that the growth rate of  the disturbances is two- 
dimensional and reaches its maximum value at the 
wall ; that is, the least stable point occurs at the wall. 
This is incredible, because the wall region should be 
unconditionally stable due to the existence of  a lami- 
nar sublayer adjacent to the wall. Later, Gaster [5] 
solved the same problem by using a similarity coor- 
dinate and normalized the eigenfunction q~, by some 
means. He obtained a critical Reynolds number of  
2" = 271 based on the total kinetic energy of  the dis- 
turbances. Saric and Nayfeh [6] later extended the 
work of  Bouthier [4] by considering also the V-effect. 
However,  in defining the neutral stability curve, they 
did not  consider the effect of  the X-dependence of  the 
disturbance intensity. Their model is thus incomplete. 
Very recently, ref. [7] presented a non-parallel flow 
analysis based on the order-of-magnitude approach 
so that there is no need to restrict the analysis to a 
weak dependence of  ~ on X, as was done in previous 
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NOMENCLATURE 
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X 
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X 0 
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Y 
y~ 

specific heat at constant pressure 
[Jkg IK-1] 

amplitude function of the disturbance 
intensity 
'~7(x, O)l~;,'(x, O) 
gravitational acceleration, 9.81 m s -2 
Grashof number based on X, 
f lg(Tw- T~,)X3/v 2 
Grashof number based on 6, fig[ T~]63/v 2 
dimensionless disturbance intensity, 

thermal conductivity [W m-~ K :] 
Prandtl number, v/~t 
Reynolds number based on X, U.~X/v 
Reynolds number based on 6, U~6/v 
dimensionless amplitude function of 
disturbance temperature, S/T~ 
normalized amplitude function of 
disturbance temperature, S/Oo'(X, O) 
temperature [K] 
time [s] 
streamwise velocity [m s- ' ]  
dimensionless streamwise velocity, U/U~ 
transverse velocity [m s ~] 
dimensionless transverse velocity, 

(Xl6)VlG 
streamwise coordinate [m] 
dimensionless streamwise coordinate, 

XlX~ 
location where the disturbance is given 
[m] 
transverse coordinate [m] 
dimensionless transverse coordinate, Y/6 
location in y-coordinate where fl reaches 
its maximum value, fl(y~) = fl ..... 

Greek symbols 
dimensionless wave number of the 
disturbance, ~6 ; or thermal diffusivity 
[m2s 1] 

P 
(I) 

CO 

stability function defined in equation 
(27b) ; or volumetric coefficient of 
thermal expansion [K :] 
inclination angle of the plate measured 
from horizontal position [deg] 
characteristic boundary layer thickness 
[m] 

61X~ 
+_ Gr ~l Re,~ 
dimensionless temperature, ( T -  T,~)/T~ 
Re6 
kinematic viscosity [m 2 s ~] 
local non-similarity parameter in the 
mainflow 
density [kg m 3] 
dimensionless amplitude function of the 
disturbance, ~/6 U~ 
normalized amplitude function of the 
disturbance, O/Oo'(x, O) 
stream function of the disturbance 
[m 2 s- ' ]  
dimensionless wave frequency, ~h6/U~. 

Superscripts 
disturbance quantity 

* properties at the critical point. 

Subscripts 
c characteristic quantity 
i imaginary part of a complex number 
nh 'nonhomogeneous' 
r real part of a complex number 
w condition at wall 
0 quantities based on quasi-parallel flow 

model 
1 correction to the quasi-parallel flow 

model 
condition in free stream. 

investigations, A superposition technique along with 
a finite difference method [8] was used to solve the 
resulting non-homogeneous disturbance equations 
without recourse to the use of an adjoint eigen- 
function. Reference [7] found that the normalization 
of the eigenfunction q~ is not entirely arbitrary 
because the condition O','(x, O) = O0~'(x, O)/Ox gives 
a constraint to the value of ~'((x, 0). The value of 
e = O~'(x, O)/O;'(x, 0), was thus treated as an arbitrary 
real function of x such that the neutral stability curve 
based on the disturbance intensity can be uniquely 
defined. The analysis leads to a critical Reynolds num- 
ber of 2* = 217.4 which agrees very well with the 
experimental data (2*= 220). Reference [7] also 

showed that the amplification rate of the disturbance 
intensity is two-dimensional, with a maximum occur- 
ring near the location r /= (Y/X)Re~ '2 = 3, and that 
the wall region is unconditionally stable. 

In this paper, the linear, non-parallel wave stability 
of mixed convection flow along an inclined ftat plate 
is studied for the entire range of inclination angles 7 
from 0 ° (horizontal) to 90 '~ (vertical). In the study, the 
above-mentioned method of ref. [7] is extended to 
treat the coupling between the momentum and ther- 
mal fields in the stability problem. The analysis is 
based on the quasi-parallel flow model in refs. 
[3, 9, 10], but a correction is made to account for the 
effect of the nonparallelism of the disturbance anapli- 
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tude functions. Owing to the use of a superposition 
technique along with a modified Thomas trans- 
formation [8] for solving the non-homogeneous dis- 
turbance equations, the present non-parallel flow 
model analysis is very efficient and consumes only 
about 10% more CPU time than the quasi-parallel 
flow model. 

ANALYSIS A N D  SOLUTION M E T H O D  

As demonstrated in ref. [10] the disturbance equa- 
tions based on the linear theory for two-dimensional, 
incompressible flow along an inclined flat plate are 

{2C/~ Y & - ? 2 V / ~  X ?t + U(¢?~/~3y 3 x - ? 2 V / i ) X  ~) 

+ V(('?217/(?Y2-(?2~[/~,Yc')X)+ ~'t~2U/[)y 2 

_ (7 ~2 V/~. y2 = v[(i?/,~ y)(,72 (~/0X: + g2 (~/c~ y2) 

_ (~/<?x)((?2 ~/ ,~x 2 + ~2 ~/~ y2)] 

+__gfisin?~?77~YT-gflcosT~,T/'OX (l)  

?'F/i?t + U ~7"fl?X + U (?T/'(?X+ V ~T/c~ Y+ ~" ~T/P: Y 

= (]x./pcp)(a2 ~,/~X2 q_ (')2 ~-/~ y2) (2) 

where the tildes denote disturbance quantities and the 
boundary layer approximation has been applied to 
the mainflow quantities. The inclination angle 7 is 
measured from the horizontal position. In the present 
investigation, artificial disturbances are imposed at a 
ccrtain axial location X0 from the leading edge of the 
fiat plate and obscrvations are made at an arbitrary 
downstream location X. The disturbances are 
assumed to have the form of a wave traveling in the 
streamwise direction X with its amplitude functions 
depending on both X and Y. That  is 

( / =  ~q'/~ Y, V = - ,<I'/~X 

= (b(X, Y)exp i 07dX-icSt 
\ da~) 

) = S(X, Y)exp i 07dX-ioSt . (3) 
\ Ox,, / 

For the spatial mode o f  disturbances considered 
here, the wave number  ~ = 07~+i~ is a complex func- 
tion of X and the wave frequency ~3 is regarded as a 
real constant. It is noted that in parallel and quasi- 
parallel flow models, the amplitude function of dis- 
turbances ~ and S are assumed to be independent of 
X and the wave number  thus can be uniquely defined. 
The wave number  and the amplitude functions of 
velocity and temperature based on the quasi-parallel 
flow model [10] are, respectively, defined as 070, ~)0 and 
So. For the non-parallel flow model, owing to the X- 
dependence of 07, @ and S, corrections on them must 
be made. The corrected quantities are assumed to have 
the form 

07 = ~o+e07,, ~ = q)0+~.@,, S =  S0+e,S, (4) 

where ~: is a small positive real number  and can be 

defined as ~. = 6/X~ such that ~ ,  ( I )  l and oe~ have the 
same order of magnitude as 070, @0 and S0, respec- 
tively. For  the quasi-parallel flow model, e. is ident- 
ically zero. 

Substituting equations (3) and (4) into equations 
(1) and (2), and using the following dimensionless 
quantities 

O0 = ~)olUc (~, (~)1 = ~)l /Uc 6, So = SoiTc,  

S, = g,/T~, ~o = 0706, ~, = 07,6, co = ~;~6/U~, 

u =  U/U~, v = ( X / b ) V / U ~ ,  o = ( r  T~I/T~, 

n = (X/T~)(dTjdX),  Re,~ = Ud)/v. 

Gro = g N T J O ~ / v  2, _v = Y/~,  x = X,'W~. (5) 

one obtains : 

0(1) level 

L, ~(~Oo)+L~2(So) = 0 (6a) 

L2,(@o)+L22(So) = 0 (6b) 

O0(x, 0) = @{~(x, 0) = @o(x, oo) = O'o(x, or.0) = 0 (6c) 

k,S'o(x,O)+k2So(x,O) = So(x, oo) = 0; (6d) 

O(g) level 

L, t(qb,) + L,  2(S,)  = ice,M, ,(c%, Oo, So) 

+M~:(~0, cq,@0, O~, S,) (7a) 

L2,(O,)+L2:(S , )  = i~M2,(c%, Oo, So) 

+ M22(c%, cq, So, @~, S~) (7b) 

O ~ ( x , 0 )  = O't (x,  0 ) = O , ( x ,  oo) = @',(x, ~ )  = 0 (7c) 

k ,S ' , (x ,O)+k2S, (x ,O)  = S, (x ,  oc) = 0 (7d) 

where 

LLI(O) = q biv + a l @ " + a 2 ~ " + a 3 ~ ' + a 4 ~  

Lt2(S ) = asS'q-a6S 

L21(@ ) = b3qY +b4( l )  

L22(S) = S " + b i S ' + b 2 S  

M l l (O:o, ~o, So) --= a7~o + as~o + ag~o + ai .So 

M l 2 (0~o, ~ ~, tJi]o, di):,., S~) = a7tff~ ~/-~- (-lg@ ~ Jr- a91~i)t 

+ a l o S . , + a ~ 7 ~  

M21(~o, @o, So) = bs@o + b6So 

M22(~o,%,So, qJ.,,S~) = b s ~ + b ~ S ~ + b T ~ ,  (8) 

and 

al = - - v ,  a2=--2~o2--i2(0%u--o~), a 3 = ~ 2 v + v  ' '  

a4=~4+ic%2(eo2U--CO~o+U"), a5 = ~ s i n 7  

a6 = --ie0~cosT, a7 = 2u--4i~0, as = 2ivc% 

ag=2(2coc~0- -3ue2- -u ' )+4 i~  3, a~o=ffcos7  

a~l = --  2i~'d + ivY'0 + (2u) -- 32~ 0u + 6ic~2)@o 
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bl = Pral ,  b 2 =  -~2- i2Pr(c toU-CO) 

b3 = -PrF t ,  b 4 = i~o2PrO', b5 = - P r 2 0 "  

b6 = Pr2u-2 i~o ,  b7 = - iSo  (9) 

with ~ = +Gr,~/Re,~, c~,. = d~o/dx, O~ = c~Oo/Ox and 
S~ = ~So/~x. 

The primes in equations (6)-(9) stand for partial 
differentiation with respect to y. In the derivation of 
equations (6)-(9), the higher derivative terms 82/~X 2, 
~3/8X 3 and ?:4/c~X4 and the higher level equations of 
O(~. 2) and smaller have been neglected. The form of 
boundary conditions (6d) and (7d) at y = 0 will vary 
according to the appropriate thermal boundary con- 
dition. For the case of uniform wall temperature 
treated in this paper, they are, respectively 

So(x,O) = So(x, ~ )  = 0 (10a) 

s .  (x, 0) = s ,  (x, 0o) = 0. (10b) 

In equation (5), the quantities 6(X), X¢, U¢(X) and 
T~(X) are, respectively, the characteristic boundary 
layer thickness, characteristic axial length, charac- 
teristic streamwise velocity and characteristic tem- 
perature. It should be pointed out here that the present 
analysis is based on a local observation position X. 
The characteristic quantities 6, X¢, U¢ and T¢ thus can 
be treated as constants in the nondimensionalization, 
equation (5)• This point has been clarified well in the 
past [7]. The quantities 6(X), U~(X) and T¢(X) are 
defined accordingly for individual flow cases and 
appropriate thermal boundary conditions• The 
characteristic length X~, however, is defined such that 
variations of quantities with respect to x are of the 
order of unity. That is 

3/(3x = X~ O/aX = O(1). (11) 

For the quasi-parallel flow model, the assumption 
~/¢?X = 0 leads to X~. = ~ (see equation (11)) and thus 
e, = 6/X~ = 0. In the present non-parallel flow model, 
the value of e is 

~, = 6/X~ = ,~/X (12) 

because of the boundary layer approximation 
(X~ = X) and the system of equations (7) is used to 
account for the effect of variations of~o, 0o and So in 
the streamwise direction. Hence, the quantities ~.,., 
O~ and S,. must be determined before the system of 
equations (7) can be solved. 

To determine ~ ,  O,. and S~, the first step is to 
differentiate equations (6a)(6c) and (10a) with 
respect to x. This yields 

L I~(O,)+L~(S,)  = ~xNil(~o, O0, So) 

+N~("o ,  Oo, So) (13a) 

L~, (O~) + L~2(S~) = ct~N~, (Cto, 00, So) 

+N22(O:o,0o, So) (13b) 

O,(x,O) = O;(x,  0) = Ox(x, m)  = o' ,(x,  ~ )  = 0 (13c) 

S~(x,O) = Sx(X, or) = 0 (13d) 

where 

NIl (~0, 00, So) = (4c% + i2u)O'0'- 2c%vO0 

- (4a 3 + i32ao2u- i2~o~02 +i2u")O o 

- i~., cos 7 So 

N~ 2(ao, Oo, So) = L,~O6" + i2c%U~Oo'- [c~2vx + (v")x]O0 

• ~ 2 t t  

-l~oZ[~oU~+(u )~]O0 

- ~'~ sin 7 So - i~0~ cos 7 So 

N21 (c%, O0, So) = (2c% + i2 Pr u)So - i2 Pr 0'0o 

Nz2(~o, 00, So) = Pr v~So +i2 Pr ~ou,So 

+Prf2xOo-ic%2Pr(O')~Oo (14) 

with U,- = 6u/c3x, (u")., = ~u"/Ox, etc. In summary, the 
stability problem under study is governed by the sys- 
tems of equations (6), 03) and (7). These equations 
have the same eigenvalue ~0 which can be found by 
solving the eigenvalue problem described by the sys- 
tem of equations (6). The values of a, and c~ are to 
be determined such that solutions of the systems of 
equations (13)and (7)exist. 

The formulation of the instability problem, rep- 
resented by the systems of equations (6), (13) and 
(7), is performed on a general basis. For individual 
applications, the mainflow quantities u, v, u", v", 0', 
f~, ux, vx, (u").~, (v").,, (0')x and f~x are determined 
from the appropriate mainflow configuration. In the 
present investigation, wave stability of mixed con- 
vection flow along an isothermal inclined flat plate is 
considered. The corresponding mainflow quantities 
are given in Appendix A. Once the mainflow quan- 
tities are available for given values of ~, 7 and Pr, the 
system of equations (6) can be solved by a modified 
Thomas transformation method [8] to yield ~o for 
given ~o and ft. The result can be expressed in the form 

Oo(x,y) = Oo'(X, o)~0(x0y) (15a) 

So(x,y)  = o"~;(x, O)so(x,y) (15b) 

where O~'(x,0) is an arbitrary function of x and 
Oo(x, y) and So(X, y) satisfy 

L, ,(qSo)+L,:(so) = 0 (16a) 

Lz, (~b0) -J- L2: (s0) = 0 (16b) 

,~ (x ,  0) = ~o'(x,  0 ) - 1  = ~0(x, co) = ,~,(x, ~ )  = 0 
(16c) 

So(x,O) = So(X, ~ )  = 0. (16d) 

The eigenvalue Uo is determined to satisfy the bound- 
ary condition qSo(x, 0) = 0. 

Substituting equations (15) into equations (13) and 
solving the resulting equations by a superposition 
technique, as described in Appendix B, one has 
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• ~(x, y) = ~; ' (x ,  o)¢ o (x, y) + ~'o'(x, o)G,°. (x, y) 

= • o'(x, 0)[eq~ 0(x, y) + q~x..h (X, y)] 

S,. (x, y) = Oo'(X, 0)[eso (x, y) + G..h (x, y)] (17) 

where e = ~ " ( x ,  O)/~;'(x, 0) is an arbitrary function 
of x, and the functions q~..h and Sx..h are defined, 
respectively, by 

4..,,h(x, Y) = ~4~.~(x, y) + ¢..h(x, y) 

S....h(X.y) = axS~..(x,y)+s.~,b(x.y) (18) 

in which ~..,, and s... satisfy 

L,, ((h,.,,) + L, 2(&..) = N, ,  (so, ¢o, So) 

L~,(¢,. , ,)+ L22(s~.,,) = N2,(cto.¢o, So) 

~.,,(x, o) = 4 L ( x ,  o) = G.,,(x, ~ )  = e L ( x ,  ~ )  = 0 

s,..(x,O) = &..(x, oc) = 0 (19) 

and q~ ;.h and s..h satisfy 

L, t(4~.,,)+ L,2(s,.,,) = N,2(~o, ~o. So) 

Lzl(~. .h)+ L2:(G.h) = N::(ao,¢o,So) 

~;.,,(x, 0) = ~ ; ; ( x ,  0) = G.~(x, ~ )  = C G(x ,  o0) = o 

&j,(x. O) = &j,(x, Go) = O. (20) 

The value of a.. can be uniquely determined by the 
boundary condition ~ , (x ,  0) = 0, which gives 

~ = - ¢~.h(x. O)/~x,,,(x, 0) (21) 

from equations (17) and (18). 
Similarly, substitution of equations (15) and (17) 

into equations (7) leads to 

ic~,. = i~ I + e  = --~Le(x,O)/dp,..(x,O) (22) 

where ~b i.o(x, y) and S l..(x, y) satisfy 

L, , (¢ , . , , )+  L,2(s, . .)  = M,,(Oto,¢o, So) 

L2 , (~I . . )+  L22(s~..) = M21(~o.~o, So) 

~ ;,a(X, O) = ¢ ;~a(X, O) = ~)i,a(X, 00) = ~ ;,a(X, 0() ) = 0 

s,.~,(x, 0) = s,.,,(x, ~ )  = 0 (23) 

and ~b~.t,(x, y) and s t.h(x, y) satisfy 

L, , (~ , .D+ L,~(s,.h) = M ,2(eo.a;. ¢o, O.....Sx...) 

L21 (q~ I J,) + L22(s ,,h) -~- M22(~0,  &,, So, ~bx.nh, S~,nh) 

~ i  , , (x ,  0 )  = ¢ ~ ; , ( x ,  0 )  = ~ ,,,,(x, ~ )  = CL,,(x, ~ )  = o 

s~.~(x, 0) = s~.~,(x. Go) = 0. (24) 

It should be noted that the value of i=~ can be 
uniquely determined by equation (22); however, a~ 
depends on the arbitrary function e. Note also that 
for a flow with the particular characteristics 

u~ = t,~ = ( u " ) x  = ( v " ) x  = ( 0 %  = a .~  = ~., = o 

the non-homogeneous terms N ~  and N22 disappear. 
see equations (14). This results in ~bx.~ = Sx.b = 0 (equa- 
tions (20)), and therefore a. = 0 and ~b.,.h = S~,.h = 0. 
This in turn gives zero values for ~ ,  qS~.. h and s,..h. 

Under  this particular situation, the present non-  
parallel flow model reduces to the quasi-parallel flow 
model. 

DEFINITION OF NEUTRAL STABILITY 
CURVES 

As mentioned earlier, the definition of the growth 
rate of disturbances depends on the use of a physical 
disturbance quantity, such as a velocity component,  
stream function, or intensity. The proper choice of a 
physical quantity for use in the definition of the 
growth rate of the disturbance is very important. It 
should be noted that as the fluctuating velocity com- 
ponents in a turbulent  flow, the disturbance velocity 
components 101 and I I?[ have the same order of mag- 
nitude. In turbulent  flows, the turbulent intensity is 
widely used as an indicator of the strength of turbu- 
lence. It is thus reasonable to employ the disturbance 
intensity as the criterion for the disturbance growth 
rate. Based on the disturbance intensity, ref. [7] stud- 
ied the non-parallel wave instability of the Blasius 
flow. The neutral stability curve obtained for this flow 
is in excellent agreement with the experimental data 
of Schubauer and Skramstad [1] and of Ross et aL [2]. 
In the present study of mixed convection flow, the 
velocity disturbance intensity will dominate the wave 
instability characteristics because the effect of  the tem- 
perature disturbance on the instability of laminar flow 
is expected to be small, especially in the forced con- 
vection dominated mixed convection regime. The pre- 
sent study, therefore, employes the velocity dis- 
turbance intensity as the criterion. 

At an observation location X, the intensity of the 
disturbance can be evaluated from 

I =  (IUI2+] 1712)'/2/U c = Eexp - d~d (25a) 
\ d-~'o 

o r  

I ( x , y ) / E ( x o , y ) =  e x p I - i [ ( ~ d e , - f i ) d x ]  (25b) 

where E(xo, y) is the intensity of the disturbance 
imposed at Xo, and 

E = ( [ ( I ) ' [ 2 q - l e O f D / ~ x q - i c o ~ ) [ 2 )  '/2 (25c) 

fi = E~/E. (25d) 

Since both x0 and x are arbitrary, for a stable flow 
to exist the integrand in the exponential power of 
equation (25b) should maintain  a positive value as the 
disturbance travels along the streamwise direction. 
Thus 

cq-eft  >~ 0 (26a) 

o r  

(a0)i -- e[fi-- (e¢l)i ]/> 0. (26b) 
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Substitution of  equations (15), (17) and (22) into 
equations (25c), (25d) and (26b) yields 

(~o)~-e[fi- (o~,,)~] >/0 (27a) 

where 

4~," ,Z,,,  + (~o" ~,)14'o I ~ +1=0 I~(,~0" ¢~,o,) 
l~- 

1~51 ~+ I=o1~1¢o I ~ 

(27b) 

and 

fi = e + ft. (27c) 

It is noted that the high order terms O(~) have been 
neglected from equation (27b), and the dot ' "  denotes 
a vector inner product if  the complex numbers are 
regarded as two-dimensional vectors, i.e. 

= 0 ~  A - i ~ i  = 0 ~ r i + 0 ~ i  j .  ( 2 8 )  

With the definition of  equation (27b), fl is a real 
function of  y and has the maximum value that 
occurs at y = y~, i.e. flma~ = fl(Y~). AS in ref. [7], 
e = ¢{'(x, O)/¢~'(x, 0) in equation (27c) is treated as a 
real function of  x. A detailed discussion on this can 
be found in ref. [7]. The neutral stability curve thus 
can be defined as the curve that satisfies 

(=0)i--e[flmax--(ae)~] = 0. (29) 

When equation (29) is satisfied, the least stable point 
(x,y~) is just neutrally stable, and all of  the points at 
y # y~ are stable. The flow in the wall region is 
expected to be unconditionally stable because at the 
wall (y = 0) the denominator  of  the function fl is 
identically zero (see equation (27b)) such that the 
value fl(x, 0) becomes negative infinity. 

R E S U L T S  A N D  D I S C U S S I O N  

Numerical  results for neutral stability curves and 
critical Reynolds numbers were obtained for Prandtl 
numbers of  0.7 and 7. Computat ions  were performed 
for inclination angles of  7 = 0 ° and 5°~< 7 ~< 90°, 
where 7 is measured from the horizontal position. The 
buoyancy parameter Gr,./Re2~ ranged from 0 to 1 for 
assisting flow and from 0 to - 0 . 1 5  for opposing flow. 
For  given values of  co and 2 the stability equations 
(16), (19), (20), (23) and (24) were solved by a modified 
Thomas transformation method [8]. The step size of  
A y = 0 . 0 5  along with q ~ =  10 was found to be 
adequate for all values of  Grx/Re 2 and 7 that were 
investigated. All computat ions were done on an IBM 
4380 computer.  

The neutral stability curves based on the present 
non-parallel flow model, equation (29), for two rep- 
resentative values of  the buoyancy force parameter of  
Gr.,./Re 2 = 0.1 and - 0 . 1  are shown in co vs 2 coor- 

I I l l l l j  I I t I I t i l t  I I I I I ] 
0.1s - , " ~ "  %/ae2× 

\ ,  : : : : :  

o.,o , / -  . . . . .  0, 

0.05 < 
\ 

\ \ \ 

0 I I IIIll r r i -[T-i-l-l~---~4~ 
4 7 102 2 4 7 103 2 

A = Re I/2 

FIG. 1. Neutral stability curves at various angles of incli- 
nation for Gr,/Re~ = -0.1, 0 and 0.1. 

dinates in Fig. 1 for Pr = 0.7 and 2 = 0 ,  30 ° and 
9if:. The neutral stability curve for the Blasius flow 
(GrjRe2~ = 0) is also plotted in Fig. I for comparison. 
Note  that for the case of  Blasius flow, the results are 
independent of  7. The region enclosed by the neutral 
stability curve represents the domain in which the 
disturbance intensity is amplifying at least at a point 
inside the boundary layer. The flow is thus regarded 
as unstable. Along the neutral stability curve the least 
stable point (x, yc) is just neutrally stable, and all other 
points with y # Yc are stable. Outside the neutral stab- 
ility curve, the flow is entirely stable. For  7 = 9 0  and 
30 °, an assisting buoyancy force is seen to stabilize 
the flow, and this trend is reversed for an opposing 
buoyancy force. It is also seen from Fig. 1 that a larger 
value of  7 gives a larger buoyancy force effect. This is 
consistent with physical reasoning. For  the case of  a 
horizontal flat plate (7 = 0c~), however, the trend is 
reversed. This behavior can be explained by noting 
that there are two terms in the mainftow conservation 
equation (A2) 

and 

+_gflsinr(T-- T,~) 

+_gflCOST • X (T-- T~,)dY 

that stand for the buoyancy force. For  convenience, 
the former is called buoyancy ,4 and the latter buoy- 
ancy B. F rom the transformed equations (A6) and 
(A16), one sees that buoyancy ,4 is O(sin 7) and buoy- 
ancy B is O(Rex ~/2 cos 7) in magnitude. For  the cases 
of  5 ° ~< 7 ~< 90 °, buoyancy B is negligible as compared 
to buoyancy ,4 because Re~/2 is very large in the prac- 
tical situation. The effective buoyancy force thus is 
proport ional  to sin 7 and has a stabilizing effect on the 
flow as can be seen from Fig. 1. In the case of  a 
horizontal flat plate (7 = 0% buoyancy ,4 disappears 
and buoyancy B is O(Re;  ~/2). In addition, the assist- 
ing buoyancy B acts in the direction normal to the 
forced flow. As a result, it aids in moving the fluid 
particles away from the plate and thus destabilizes the 
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2.0 I I I I I I I I I 

1.5 

0 5  

/ / \ c ~ /  P r ,  0.7 
o / X.#7 ,--90 

I I I I I I I i I - 0 5  
2 4 6 8 10 

y 

Fie;. 2. The function /~ of the critical points at 7 = 9 0  for 
various values of Gr,/Re~. 

main flow, even though  its effect is not  tha t  significant. 
Under  the condi t ion  of  7 ~ tan l (Re,. ~/2) or 
0 ~< 7 ~< 5 ,  bo th  buoyancy  A and  buoyancy  B mus t  
be considered.  This point  will be discussed later. The 
points  having the mi n i m um  value of).  on  each neutra l  
stability curve are called critical points .  The detailed 
propert ies  at such a poin t  are listed in Table  1 for 
Pr = 0.7 and  in Table  2 for Pr = 7. Based on  these 
properties,  the funct ions /J (y)  for Pr = 0.7 are plot ted 
in Fig. 2 for var ious values of  the buoyancy  pa ramete r  
at ,, = 9 0  and in Fig. 3 for representat ive values of  
the incl inat ion angle at ~ = _+ 0.1. All of  the funct ions  
[/ shown in Figs. 2 and  3 possess two humps.  The  
location y = y~ where fl reaches its m a x i m u m  value is 
the least stable point .  It should be noted  tha t  the value 
of [/(0) is undefined, see equa t ion  (27b). Its value is 
believed to be negative infinity such tha t  the wall 
region is uncondi t ional ly  stable due to the existence 
of  a laminar  sublayer  adjacent  to the wall. Figure 2 
reveals tha t  the funct ion fi increases for an  assisting 
buoyancy  force, especially near  the inner  h u m p  
(y, ~ 3) where the least stable point  exists. On the 
o ther  hand,  an increasing opposing buoyancy  force 
gives a sharp  decrease at  the inner  h u m p  such tha t  the 
least stable poin t  jumps  f rom the inner  h u m p  to the 
outer  h u m p  (Yc ~ 6.5) at a certain buoyancy  par-  
ameter  in the range - 0 . 1 0  ~< Gr,./Re 2, <, --0.05. Simi- 
lar effects can be found in Fig. 3 for 7 = 90° and  30 ° 
because the buoyancy  force is p ropor t iona l  to sin?,. 

2.0 L I I I I I I I I 

P r  = 0 .7  
1.5 / ~ \ ~  7 

~ . o ~ 

. / \ ~ / Grx/ReZx / /  " o .  
o 0 

. . . .  0.1 

- 0 . 5  I f I I I I i I I 
1 2 3 4 5 6 7 8 9 10 

Y 

FI(;. 3. The function [:t of the critical points at various angles 
of inclination for Gr,/Re~ = --0.1, 0 and 0.1. 

4 _ 1 1 1  I I I  I I I  I I I I I I I  I I  I I I 

Pr : 0.7  ~- 

7 7 =  Z- 

y Present Study 
7 ¢ . . . .  Quasi-paralleL 

~'based on outer hump ( "y = 90* ) 
4 I I I I I I I I I I I I I I t I I I I L-[  

-oJ 0 oJ 0.2 04 06 08 ~ 0  

Grx/Re2x 

F[G. 4(a). The critical Reynolds number as a function of 
GrjRe~ for various angles of inclination. 

% .  

~ x  

F l O .  4 ( b ) .  

103 I I I I I I I I I I I I I I / / ~ / I /  I_~ 

7 
. r .  0 .  

. . . . . .  = . ~ c - ~ _ o  _ 

[ ~  ~ 

j / 

2 I ~ / S "  J Present Study l o  ~-  @. ! ~': ~ . . . .  Quasi-paralle~ 
~ . - / /  - - Present Study (based 

7 ~ on outer hump) 

- o.~o - o .os  o o.o5 o.~o 

Grx/ReZx 

Enlargement of Fig. 4(a) for -0.1 ~< Gr,,'Re~ 
~<0.1. 

For  the case of  a hor izonta l  plate (3, = 0 )  the buoy- 
ancy effect on funct ion /~ is negligible. The trend,  
however,  is reversed. For  instance,  the values of fi ...... 
are, respectively, 1.1841, 1.1830 and  1.1787 for 
Gr,/Re~/2 of --0.0005, 0 and  0.0005 or Gr,/Re~ of 
- -  0.111, 0 and  0.106 (see Table  I ). 

The critical Reynolds  number ,  2" = (Re~')*, are 
presented in Fig. 4(a) as a funct ion of  the buoyancy 
pa ramete r  Gr~/Re 2 for Pr = 0.7 and 7 = 90' ,  4:5 , 30 , 
15", 5" and  0 ° . For  a clearer view, the por t ion 
--0.1 ~< GrjRe~ <~ 0.1 is enlarged and  shown in Fig. 
4(b). The results based on  the quasi-parallel  flow 
model [10] are also plot ted in Figs. 4(a) and  (b). All 
of  the curves f rom the present  non-paral le l  flow model 
are seen to pass th rough  the point  Gr,/Re~ = 0 and 
2" = 217.4. This  is because the buoyancy  effect dis- 
appears  for all incl inat ion angles 0 ~< ? ~< 90 at 
Grx/Re~ = 0. The curves for 5 ~ <  ?' ~< 90 '  possess 
positive slopes which means tha t  an increase in the 
buoyancy  pa ramete r  GrjRe~ will stabilize the flow. 
For  the hor izonta l  flat plate (7 = 0 )  the t rend is 
reversed. These behaviors  agree with the quasi-par-  
allel flow model.  Due to the neglect of  the streamwise 
dependence  of  wave propert ies,  the quasi-parallel  flow 
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Non-parallel wave instability of mixed convection flow on inclined flat plates 1395 
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S in  7 

of sin 7 

model overpredicts the critical Re"qolds number by a 
great amount. For example, for Grx/Re~ = 0 the quasi- 
parallel flow model gives 2*-= 290 which is about  
33% higher than the present result of  2* = 217.4 and 
the experimental data of  2* = 220 [1,2]. For  an oppos- 
ing buoyancy force, the overprediction is even larger. 
Unfortunately,  there are no experimental data avail- 
able to verify the present results for the case of  mixed 
convection flow. When ;+ is sufficiently large or e, = 1/2 
is sufficiently small, the present definition of  the neu- 
tral stability curve, equation (29), reduces to (~0)+ = 0. 
Thus, the quasi-parallel flow model is expected to give 
a good prediction for 2 > 3000 as can be seen from 
Fig. 4(a). 

It is pointed out here that for the vertical plate 
(7 -= 90) ,  the critical Reynolds numbers based on the 
outer hump of function [~ (see Figs. 2 and 3) are 
obtained for the case of  an opposing buoyancy force. 
From Fig. 4(b), one can see that for Grx/Re  2 
< - 0 . 0 6 6 ,  the outer hump overtakes the inner 
hump and gives a smaller critical Reynolds number. 
For  small inclination angles, the buoyancy effect 
is not as significant. The curves shown in Fig. 4(a) for 
7 = 5 and 0 thus approximate straight lines with a 
small positive slope for 7 = 5~' and a small negative 
slope for ? = 0' .  

Based on the behaviors described above, it is 
expected that there exists a certain value o f ?  at which 
the net effect of  buoyancy A and buoyancy B becomes 
zero and thus a straight line of  zero slope exists at 
that inclination angle. This point can be verified by 
replotting the critical Reynolds number as a function 
of  sin ~, for various values of  G r , / R e  2 as shown in Fig. 
5. It is interesting to note from Fig. 5 that smooth 
curves can be constructed in the entire regime of  
0 ~ sin °~ ~< 1 for each value o fGr+/Re  2 that was inves- 
tigated. As expected, these curves have a common 
crossover at 7 = 1.05 (i.e. sin7 = 0.0183) where the 
net effect of  the buoyancy force is zero. As a result, 
for an increase in the value of  Grx/Re~ the flow will 
become more stable when ? > 1.05 ° and less stable 

- I  I I I I I I r I I I L ~  
- -  J t - -  

7 - - - ~ : 0 . 7  / /  

4 . . . .  Pr=7 / /  
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Grx/Re2x 

FiG. 6. The effect o f  Prandtl number on the critical Reynolds 
number. 

when 7 < 1.05 °. Figure 5 also reveals that an increase 
in the inclination angle ? stabilizes the flow ['or an 
assisting buoyancy force and destabilizes the flow for 
an opposing buoyancy force. 

The critical Reynolds numbers for Pr - 0.7 and 7 
and for ? = 9if ,  15 ° and 0 ~ are brought together in 
Fig. 6 to examine the effect of  Prandtl number. Figurc 
6 illustrates that for weak buoyancy forces an increase 
in the Prandtl number destabilizes the flow for an 
assisting buoyancy force and stabilizes it for an oppos- 
ing buoyancy force. However,  for strong assisting 
buoyancy forces, a higher Prandtl number gives rise 
to a higher critical Reynolds number. These trends 
agree with those from the results of  quasi-parallel flow 
model  analysis [3, 11]. 

C O N C L U S I O N  

Linear wave instability of  mixed convection flow 
along inclined flat plates is investigated by employing 
a non-parallel flow model based on the order-of-mag- 
nitude analysis. The resulting non-homogeneous,  
coupled disturbance equations are solved by a super- 
position technique along with a modified Thomas 
transformation method without the use of adjoint 
eigenfunctions. The solutions reveal that for a given 
buoyancy parameter I Grx/Re. 2 ] as the inclination angle 
7 increases the flow becomes more stable for the assist- 
ing flow and less stable for the opposing flow. With 
an increasing value of  Grx/Re.2,, the flow is found to 
become more stable for 7 > 1.0Y' and less stable for 
7 < 1.05~ when the plate is almost horizonlal. At 
? = 1.05 °, the net effect of  the buoyancy force on the 
critical Reynolds number appears to be zero in the 
range of  --0.15 ~< Gr.~/Re 2 <~ 1. 
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A P P E N D I X  A 

The conservation equations for mixed convection flow 
along an inclined flat plate are 

OU/?~X+(?V/~Y = 0 (A1) 

U~U/OX+ V~U/c)Y = 4-_.qflsiny(T-- T~) 

+gFcos7 0x ( T - - T ~ ) d Y + v g 2 U / ~ Y  ~ (A2) 

U ~T/OX 4- V aT/O Y = ~ O2T/e y2. (A3) 

The associated boundary conditions are 

U(X,0) = Uw(JO, V(X,0)=  V~(X), U(X, o~) = U~ 

T(O, Y) = T(X,  oo) = T~ 

T(X,  0) = Tw(X) if T~(X) is known 

# T ( X , O ) / ~ Y  = - -qw(X) /k  ifqw(X) is known. (A4) 

In writing equations (AI) (A4), the Boussinesq approxi- 
mations are employed and the fluid properties are assumed 
to be constants.  The plus and minus signs in front of  the 
first buoyancy torce term on the right-hand side of equation 
(A2) apply, respectively, to upward and downward forced 
flow, while those in front o f  the second term to flow above 
and below the plate. 

By introducing the general t ransformation 

~9 = vXf(~, q)/6, rl = Y/6, 0 -- (T - -  T~)/T~ 
(AS) 

= ~(X), b -- 6(X) ,  T¢ = T¢(X) 

the governing equations (AI) (A3) become 

f ' "  + a J f "  +bf '2  + AO4- B[p~lO+(p-e )w c?;w/¢?~] 

= e ( f ' "  a f / a ¢  - . f '  g f ' / o ~ )  

0"" 4- Pr a/O" 4- Pr ef'O = Pr c(O' ~?f/~ -- f"  ~ 0 / ~ )  

w ' + O  = 0 

where 

(A6) 

and 

ux - - p ~ f " -  c a f ' / a¢  

(u"L = - p q . f ~ -  c ~f'"/O~ 

v~ = -p2rl2 f "  4- (p - 2p 2 - cpe)qf' 

- c p J -  Zp,Tc af'/a~ 

+ ( m - - p +  I +¢m~)c c3f/O~ 

- c  2 a2f/aC- 

(v")~ -- p2rl2J'i~ + (p - -4 p 2 - - cp ~ )q f "  

-- 3cp¢f'"-- 2prlc c?f'"/~{ 

+ ( m - - 3 p +  1 +¢m~)e c~f"/~¢ 

_ c  ~ ~2 f " /0~  

( 0 ' ) , .  = -p~O'" c ao'/a~ 

~'2x = p2rl20,,  4- (p2 -- np + ~ff ¢) tlO' 

--cneO+ 2prlc ~O'/c~ 

- -  ( m  4- n + ~m~)c aO/3~ + c 2 c ~20/0~ 2 

~.,. = X d( /dX.  (A11) 

In the present investigation, forced convection domin- 
ated mixed convection flow along an inclined flat plate is 
considered under the thermal boundary condition of uniform 
wall temperature without injection and suction (U~ = Vw 
= 0). Therefore, 6, U~ and T~ are conveniently defined, 
respectively, by 

a =  l - p ,  b = 2 p -  l, c= - m ~ ,  e =  - n  

m = (X/~)(d~/dX),  n = (X/T~)(dTc/dX) 

p = (X/6)(d6/dX),  A = atGrr~l(6/x)a+Jsin7 

O = "1 Crr~ @/X) 5+; cos °; 

G~'/~ = (9ff, TcX3/vZ)(6/X) J. (A7) 

The associated boundary conditions are 

(p l ) f (¢ ,O)+c~f(¢ ,O) /a¢ = vwb/v 

f ' (~ ,O)  = U~b:/vX, f ' ( ~ , ~ ) =  U~b2/vX 

jO'(~, O) + (1 -- j )  0 (~, O) = 1 -- 2j 

0(~,0) = w(~, c~) = 0. (A8) 

In equations (A7), a = 1 stands for buoyancy assisting 
flow and ~r = - 1 for buoyancy opposing flow. The index j,  
the characteristic temperature Tc(X ) and the general Grashof  
number  Gr~ are defined such that  

j = 0 ,  T~= T w ( X ) - - T ~ ,  

Grr~. = Gr x if T~(X) is known 

j = 1, T~ = q~(X)6(X)/k ,  

Gr~ = Gr* ifqw(X) is known. (A9) 

The system of  transformed equations (A6) and boundary 
conditions (A8) can be easily solved by a method proposed 
in ref. [12]. Once the solution is obtained, the mainflow 
quantities which are needed for the analysis of  wave insta- 
bility problems are evaluated from 

u = f ' ,  v = (p- -  1 ) f + p r l f ' + e O f / ~  

u " = f " ,  v " = p r l f ' " + ( 3 p - - 1 ) f " + c ~ f " / c 3 ~  

f~ = (X/T~)(OTIOX) = nO--p~lO'--c~O/O¢ 

J( 2+j ~, = a(IGr~[/Re~)(U~/Uc)(6/ ) (AI0) 
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6 = X/Re] :2, U c = U~, T~ = Tw-- T~ = constant 
(A12) 

such that n = 0, p = I /2, j = O, Gr""~ = GG, A = a( lGr~ l / Re 2) 
sin y, B = a([Gr~l/Re~/2) cos 7, and the boundary conditions 
reduce to 

f ( ¢ , O )  = f ' ( ~ , 0 )  = f ' ( ~ ,  ~ ) - -  1 = 0 

0(~, 0 ) - -  1 = 0(~, oo) = w(~, o~) = 0. (A13) 

The parameters defined in the stability problem are then 

2 =  Rea= Re.~ '2, e = ~ / X = 2 - 1  

= alGr~.l/Re~, ~ = ~. (AI4) 

The pseudo-similarity variable q defined in the mainflow is 
identical to y defined in the flow stability problems because 
the flow stability is analyzed at a local value of X or 2. 

For the cases of vertical and inclined fiat plates 
(5' ~< 7 ~< 90'). ~ is defined by 

= I Gr~ I/Re~. (A15) 

This gives 

A =o'~sin,/ ,  B = a ~ R e ~ / Z c o s 7  

= a~, m - 1. (AI6) 

In practical situations, Re~ :2 is usually large and B assumes 
essentially a value of zero in the range of 5 ° ~< )' ~< 90 °. 

For the case of a horizontal flat plate (y = 0 °) 

~=lGr~l /Re~  '~, A = 0 ,  B = a ~  

= o~2, m = 1/2. (AI7) 

A P P E N D I X  B 

Equations (13) and (7) have the common form 

L~ ~ (O) + L,  2(S) = FF~ t + FI_, 

L,I(O)+L2~_(S) = FF21 +F22 

o ( o )  = o ' ( 0 )  = o ( ~ )  = o ' ( o Q )  = o 

S(0) = S ( ~ )  - 0 (B1) 

where the linear operators L,,, L~2, L2t and L22 are defined 
in equations (8) and (9). They are known after the eigenvalue 
:% is determined by solving the eigenvalue problem described 
by the system of equations (6) or (16). The non-homogeneous 
terms F, , ,  FI2, F2, and F22 are all known functions ofy. The 
value of F is to be determined such that solution of the 
system of equations (B 1) exists. Since L~j are linear operators, 
the solution can be superposed by 

• = O"(0)4~,, + FO,, + O, 

S - O"(0)s, + FS~ +S,  (B2) 

where 0a, s., Oh, Sh and 0,,. Sc are, respectively, defined by 
the system of equations 

L i  t(~ba)+ Li2(sa) = 0 

L21(~a)+ t22(Sa) = 0 

0 ~ ( o )  = ~ £ ( o ) - l  = ~ , , (~ )  = 0 ; ( ~ ) -  o 

s~(0) = s~(w) - 0 (B3) 

LII(Ob)+LL2(Sh) -- F~, 

L21 (Ok) + Lz2(Sh) - F,t 

o ; ( 0 )  = o ; ' ( o )  = o ~ ( ~ l  - o / , ( ~  ) - o 

Sh(0) = Sh(.zc) = 0 (B4) 

and 

L t I ( O , ) + L I 2 ( S , . )  = F,2 

L2, (Oc)+L22(S, )  = F22 

o j ( o )  = o / ' ( o )  = o , . ( ~ )  = . ; ( , J ~ )  - o 

s , , ( 0 )  = s c ( o c )  = 0 .  ( B S )  

It should be noted that the solution to the system of 
equations (B3) is identical to that of the system of equations 
(16) because the same eigenvalue ct o obtained from system 
(16) has been imposed on system (B3). It should also be 
noted that the present analysis is performed at a local value 
of X. Therefore, qs~O,) = ~o(X,y),  0.(0) = qS0(x,0) = 0 and 
s.(y) = so(x,y).  With this, the boundary condition 0(0) - 0 
gives 

0(0) = O"(0)0, (0)+ FO~(O)+O, (0) = 0 

o r  

r = -O,(O)/Oh(O). (B6) 

The solution of the system of equations (B1) thus has the 
form 

O0, ) -- O"(0)0,,(y)+Ooh(y ) 

Sly)  = O"(O)so(y) + S,h( y) (B7) 

where 

O,,h(y) = FOe(y) + O,(v) 

S,h(y) -- FSh(y)+ S,( y). (B8) 

This superpositions technique can be verified by mul- 
tiplying equations (B3), (B4) and (B5), respectively, by 
O"(0), F and unity, and then applying equations (B2). A 
proof of this approach can be found in ref. [7] for the case 
of Blasius flow. 

INSTABILITE D 'ONDE NON PARALLELE POUR LA CONVECTION MIXTE SUR DES 
PLANS INCLINES 

R6sum~-Une analyse d'6coulement non parall61e est conduite pour 6tudier l'instabilit~ lin6aire d'onde 
dans le cas de la convection mixte sur une plaque plane isotherme inclin~e. Les 6quations coupl&s, non 
homogbnes pour les perturbations de quantit6 de mouvement et de temperature sont r&olues par une 
technique de superposition associ6e fi une m&hode de transformation de Thomas modifi&. Les nombres 
de Reynolds critiques sont pr6sent6s pour des angles d'inclinaison 0 ° ~< 7 ~< 90° (off 7 est rep~r~ par rapporl 
fi l'horizontale), pour le param6tre de flottement -0 ,15  ~< Grx/Re~ <~ 1 et pour des nombres de Prandtl 
6gaux fi 0,7 et 7. On trouve que l'effet de la force d'Archim6de sur le nombre de Reynolds critique est 
essentiellement nul fi ;~ = 1,05 °, lorsque la plaque est presque horizontale. Pour y > 1,05 °, un accroissement 

de Grx/Re] stabilise l'&oulement. Ce comportement est renvers6 lorsque y < 1,05 °. 
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DIE NICHT-PARALLELE WELLEN-INSTABILIT~T BEI MISCH-KONVEKTION AN 
GENEIGTEN EBENEN PLATTEN 

Zusammenfassung--Die nicht-parallele lineare Wellen-lnstabilit~it bei Misch-Konvektion an einer iso- 
thermen geneigten ebenen Platte wird mittels einer Gr6Benordnungs-Absch~itzung untersucht. Diese 
Absch~itzung macht die bisherige Beschr~inkung auf eine schwache AbhSngigkeit von Ver~inderungen 
der St6rungsintensit~it in Str6mungsrichtung fiberfliissig. Es ergeben sich nicht-homogene, gekop..pelte 
Gleichungen fiir die St6rungen von Impulstransport und Temperatur. Diese werden mittels einer Uber- 
lagerungs-Technik und unter Verwendung einer modifizierten Thomas-Transformation gel6st. Es werden 
kritische Reynolds-Zahlen fiir die folgenden Parameter-Bereiche vorgestellt: Neigungswinkel bezfiglich 
der Waagerechten 0 ~ ~< 7 ,G< 90 ~', Auftriebsparameter -0 ,15  ~< Gr~/Re~ ~< 1, Prandtl-Zahlen 0,7 und 7. Es 
zeigt sich, dab bei fast waagerechter Platte (7 = 1,0Y') der Netto-Effekt der Auftriebskraft aufdie kritische 
Reynolds-Zahl verschwindend klein ist. Fiir 7 > 1,05" wird die Str6mung dutch ein Anwachsen yon 

Gr~/Re.~ s tab i l i s ie r t~as  Umgekehrte gilt fiJr ~/< 1,05 °. 

BOSIHOBA.q HEYCTOITIqHBOCTb CMEII IAHHOKOHBEKTHBHOFO TEqEHH~I HA 
HAKSIOHHbIX FIflOCKHX FUIACTHHAX 

AlUlOTalIMII--AHadlH3 Henapa~eabHblX TeqeHHH MeTO~OM OlleHKtl nopff~ra Be3IHqHH HCHOYlb3yeTcfl ~IYlfl 
H3yqeHHfl 21HHe~HO~ BOJIHOBOH yeTO~qHBOCTH CMelIIaHHOKOHBeKTHBHOFO TeqeHH~ B~OYlb H3oTepMHqec- 
rOfi HaK~onno~ n:mcrofi rtaaereHbi. ~aHn~I~ no~xo~ CHHMaeT paHee cymecxs~'~emee orpananeHne o 
cza6ofi 3aBHCHMOCTH Be.rlH*IHH BO3MyllleHHII B~RO3Ib nOTOKa. 1-Io.rlyqeHHbIe B pe3y.qb_TaTe HeOj1HOpORHble 
CBfl3aHHbIe ypaBHeHHff ~x.rtfl BO3MytUeHH~ ~Mrty.abca H TeMnepaTypbi pelua~oTcfl COBMeCTHO MeTO~OM 
nO~lCTaHOBKH H MORHd~HtlHpoBaHHI, IM MeTO~OM npeo6pa3oaann~ ToMaca. KpHTHqecKHe qHc~a Pe~HO- 
~bRca ffl0eRcTaB~eHbI ~JI~l yF~OB HaK~oHa 0 ° ~< T ~< 90 ° (rIpHqeM 70TCqHTI,IBaeTcff OT FOpH3OHTa~H), B 
~nana3oHe napa~eTpa ima~yqec-rn --0.15 ~< GrffRe~ z,a~ naceJi l-IpaHa~:m 0.7 n 7. H a ~ e n o ,  qxo pe3y- 
~Tnpy~omee ~SmaHae crta~ n~a~yqeern na rpnTeqec~oe qncao Pe~no:m~ca paaao Hymo npn ? = 1.05 °, 
r o r aa  n3lacTnna noqTrI roprl3OrITaylbHa. ~i~i ~ > 1.05 ° yBearlqeHrle 3ua~lenri~l Grx/Re2x cTa6rl3Irl31~pyeT 

Te~enne, a/ la~ 7 < 1.05° Ha6moaaeTca o6paTnufi aqbqbeKT. 


